Chondrometrics is a leading provider of medical image analysis services to researchers in academia and in the pharmaceutical industry
ABOUT USChondrometrics was founded in 2003 and is located at Freilassing, Germany, next to the Austrian border; it is a leading provider of medical image analysis for academia and industry. Using a regulatory compliant analysis pipeline, the company relies on MRI to offer quantitative imaging analysis of articular tissues and structural pathology, for research, epidemiological, and interventional studies, Its 20-year experience in high quality image segmentation has recently been supplemented with fully automated image analysis approaches, using deep-learning (AI) technology. The ultimate goal is to qualify imaging endpoints as surrogate markers of clinical outcome in clinical trials, mainly for the regulatory approval of disease-modifying osteoarthritis drugs (DMOADs).
Where We Come From - Where We Are
Chondrometrics GmbH has been founded by Felix Eckstein and Reinhard Putz, as a spin-off from the Ludwig-Maximilians Universität München (Munich, Germany). In 2004, the company transitioned to Ainring, in the Southeast Germany, and in 2021 to its current location at Ludwig-Zeller-Str. 12, 83395 Freilassing, Germany, next to the border of Salzburg, Austria.
What We Do
Chondrometrics provides medical image analysis services to researchers in academia as well as in the medical device and pharmaceutical industry. The company relies on magnetic resonance imaging (MRI) to quantitatively analyze synovial joint structure and pathology, including (but not limited to) cartilage morphology and relaxometry (e.g., T2), meniscus morphology and relative position, bone size and shape, muscle and adipose tissue mass, synovitis, and properties of other musculoskeletal tissues. We have developed a highly efficient software platform and rely on a team of well-trained readers with >20 years of experience in manual segmentations of MRIs, and the Chondrometrics 3.0 software and reading process comply with current regulatory requirements. The company maintains a GCP-compliant quality management system that is certified according to EN ISO 13485:2021 (link to certificate) by medical device certification GmbH (MDC) and is regularly audited by MDC and other partners and clients. The software platform used represents a Class-IIa medical device product () according to regulation (EU) 2017/745 (Annex IX) (link to certificate). Chondrometrics recently started segmentation and analysis services using novel, fully automated technology using deep-learning (AI) approaches, specifically convolutional neural networks (CNNs). In this area, the company profits from a rich resource of tissues segmentations generated over the years by its expert readers that can be used for training and validation of versatile and specific models for automated analysis in various contexts.
Why We Do It
We use quantitative imaging measures to identify different “morpho-types” of human joints that may entail certain risk profiles and thus require adapted therapies for improved disease outcome. These endpoint also help investigating male-female differences in articular tissue anatomy and pathology, helping to better understand and appreciate sex-differences in osteoarthritis in general. They can further elucidate resilience towards joint disease through unraveling functional adaptation processes of articular tissues. Imaging endpoints in epidemiological studies can identify risk factors of incidence and progression in osteoarthritis. Eventually, these quantitative meassures may be qualified as surrogate markers for clinical outcome (measures of how a patient fees, functions, or [her/his joint] survives) in clinical trials, mainly for the regulatory approval of disease-modifying osteoarthritis drugs (DMOADs).
What’s the Problem
Osteoarthritis is a leading cause of functional disability worldwide, affecting millions of people. This devastating degenerative joint disease causes structural changes in joint tissues, leading to pain, stiffness, and functional disability. Early diagnosis and careful clinical management are crucial to maintaining the patients' quality of life. With an aging population, the prevalence of osteoarthritis is bound to rise, stressing the need for effective and sustainable therapy. Apart from lifestyle changes and physiotherapy, current medical intervention is limited to managing pain. No medication is currently available to modify the structural pathology of articular tissues, disease-progression, and the natural history of osteoarthritis.
Where We Are Heading
The quantitative imaging measures developed and provided by Chondrometrics may be used in proof-of-concept (POC) trials of structural efficacy and safety. These may ensure that the intended mode-of-action (MOA) of a DMOAD targets the designated tissue, that the structural treatment effect is of sufficient magnitude to impact long-term clinical outcome, and that a potential sudden relieve in pain has no deleterious effect on the articular tissues. In larger follow-up studies, our methodologies can help demonstrating whether the drug's impact on long term clinical benefit (for instance in reducing knee replacements rates) is indeed related to the assumed MOA and target tissue, so that the putative DMOAD can obtain either full or preliminary/conditional approval for its use in osteoarthritis patients. By being validated, reliable, precise, and highly sensitive to both change and interventions, Chondrometrics’ technology helps to make clinical trials more efficient, i.e. more streamlined, faster, and more affordable. Providing expert consulting based on over 30 years of academic experience, we can ensure that the image acquisition protocol of the study will effectively support the desired imaging measures, that the imaging measures selected will match to the drug’s unique molecular profile, and that patient selection criteria match both with the drug’s MOA and the selected imaging endpoints. This type of alignment maximizes the chances of a clinical trial being successful, in that it provides clear and unambiguous answers as to whether an investigational medical product (IMP) has relevant impact on the structural pathology of joint tissues and on the natural progression of the disease (osteoarthritis).
Interested to learn more and here about the research done by company representatives.
Please visit the RESEARCH Section on this page. Contact: eckstein@chondrometrics.de
Chondrometrics GmbH provides expert consultation and image analysis service to academic researchers and the pharmaceutical industry. The strength of Chondrometrics, we believe, lies in the dedication and experience of its team of specialized researchers and readers, the profound integration with the scientific community, the rigorous scientific validation of its methodologies, and the transparency of its technology by publication in leading scientific journals. At Chondrometrics, we value our clients as collaborators, react immediately to their requests and specific needs, provide validated scientific information, communicate promptly, and act with anticipation.
Felix Eckstein was born in Freiburg, Germany. He studied Medicine in Freiburg and Heidelberg to graduate in 1991. He received a scholarship from the German Academic Exchange Service (DAAD) to study Medicine at Bristol University (U.K.) in 1987/1988 and a scholarship from the Dr. Carl Duisberg Stiftung to complete a doctoral thesis at the University of Innsbruck (Austria) in 1988/1989.
In 1991, Felix Eckstein joined the research group of Prof. Reinhard Putz at the Institute of Anatomy at the Ludwig-Maximilians-University (LMU), Munich. In 1993, he joined the Institute of Diagnostic Imaging at LMU and started working on the quantitative analysis of articular cartilage from MRI. Back to Anatomy in 1995, he completed his „Habilitation“ at the Institute of Anatomy in 1997.
In 2003, he founded Chondrometrics GmbH, to become a leading provider of medial image analysis services to researchers in academia and the pharmaceutical industry.
In 2004, Felix Eckstein became Professor of Anatomy and Director of the Institute of Anatomy at Paracelsus Medical University (PMU) in Salzburg. His research focuses on the integration of imaging methods for understanding the morphology, function and pathophysiology of musculoskeletal tissues, in particular osteoarthritis and osteoporosis.
In 2019 he assumed a research professorship to became Head of the “Research Program for Musculoskeletal Imaging “at the Center of Anatomy & Cell Biology at PMU. He continues working on imaging biomarker qualification for the use as surrogate endpoints in clinical trials on disease modifying therapies He also focusses on the clinical validation of automated measurement technology, based on AI- and deep learning (DL) approaches.
He organized the 1st Int. Workshop on Osteoarthritis Imaging (IWOAI) in Ainring in 2007, the 5th/14th IWOAI in Salzburg in 2011/2020, and the Annual Meeting of the Anatomical Society in Salzburg in 2014.
Felix Eckstein was president of the German Society of Biomechanics (DGfB) in 2002/3, Secretary General of the Osteoarthritis Research Society International (OARSI) in 2005/6, board member of OARSI in 2005-2009, and was invited to be a Member of the German National Academy of Science (Leopoldina) in 2013.
Wolfgang Wirth was born in Fürstenfeldbruck, German. He studied Computer Science at the Technical University of Munich (TUM) and graduated in 2006. While studying at the TUM, Wolfgang Wirth was a co-founder of BitoS GmbH in 2004, a company focusing on mobile applications. In 2003, Wolfgang Wirth became a free-lancer at Chondrometrics GmbH, for which he develops software applications for quality control, segmentation and quantitative analysis of anatomical structures, including cartilage, meniscus and muscle.
He completed his master thesis titled “Automatic detection of subregions in cartilage plates for the quantitative analysis in osteoarthritis patients” and graduated with a “Master of Science” degree in “Computer Science” from TUM in 2006.
From 2007, Wolfgang Wirth worked at the Institute of Anatomy of the Ludwig-Maximilians-University (LMU) in Munich, Germany in the research group led by Prof. Reinhard Putz. Professor Putz also was supervisor for his PhD doctoral thesis titled “Longitudinal Analysis of Cartilage Morphology in Subregions of Knee Osteoarthritis Patients”.
Since 2009, Wolfgang Wirth works at the “Institute of Anatomy and Musculoskeletal Research” at Paracelsus Medical University (PMU) in Salzburg, Austria, led by Prof. Felix Eckstein. In 2010, Wolfgang Wirth became co-owner of Chondrometrics GmbH and is responsible for the IT infrastructure, software development, and quality management in the company. Wolfgang Wirth has authored and co-authored more than 100 original scientific papers in leading scientific journals.
Susanne Maschek was born in Munich, Germany. She studied Veterinary Medicine at the LMU Munich, Germany and graduated in 1995.
From 1995 to 1997 Susanne Maschek worked with the group of Prof. Fritz Grimm at the Institute of Avian Medicine, LMU, Oberschleißheim, Germany for her PhD doktoral thesis titled "Studies of Heavy Metal Toxification in Predatory Birds, and Multi-Element Analyses Using Neutron Activation Analysis in Feathers". She performed the neutron activation analysis at the Research Reactor Center of the Department of Physics, TUM, Garching under the guidance of Prof. Schreckenbach, where she had a part time employment.Susanne Maschek worked also as substitute in several veterinary surgeries during this period.
From 1999 on she was employed in a veterinary surgery, Oberaichbach, Germany, with focus on tall animals (cattle, horses) and birds until her child-raising leave (2001 to 2003).
From 2004 to 2014 Susanne Maschek worked as freelancer at Chondrometrics GmbH. In 2015 she became Chief of Human Resources, Education, and Quality Control. She performs segmentations and is responsible for supervision and quality control of quantitative readings, as well as for the training and education of technicians. Since 2010 she is co-owner of Chondrometrics GmbH.
Susanne Maschek also performs segmentation and quality control readings freelance-based for the Institute of Anatomy and Cell Biology of the Paracelsus Medical University (PMU) in Salzburg, Austria.
Reinhard Putz was born in Innsbruck/Austria. He studyied medicine and graduated in 1968. He became Assistant Professor at the University of Innsbruck Institute of Anatomy, where he completed his postdoctoral thesis (Habilitation) in 1979. After research stays in Munich and Freiburg/Germany, Professor Putz became Director of the Institute of Anatomy at Albert-Ludwigs-Universität Freiburg. In 1989, Professor Putz was appointed Director of the Institute of Anatomy at Ludwig-Maximilians-Universität (LMU) München. Between 2003 and 2010 he served Vice- President of LMU. Professor Putz retired from his academic positions in September 2010. In 2003, Professor Putz was a cofounder of Chondrometrics GmbH and since serves as Vice President of the company.
Professor Putz’s research focuses on the biomechanics of the skeletal system, especially the formfunction relationship of the joints and the spine. He has also addressed various topics concerning clinical anatomy and general aspects of medical education, leading to approximately 250 publications and more than oral 450 presentations. Professor Putz was instrumental in producing a series of anatomy textbooks with international circulation (e.g. Sobotta, Atlas of Anatomy). Reinhard Putz was engaged in a series of scientific journals and serves as Associate Editor of Advances in Anatomy, Histology and Embryology.
Reinhard Putz was president of the European Association of Clinical Anatomy (EACA) form 1991 to 1993, Associate Secretary General of EACA from 1993 to 2003, Vice-President of the German Society of Biomechanics (DGfB) 1997-1999, member of the board of the “Anatomische Gesellschaft” from 1998 to 2002, member of the board of the German Reunion of Medical Schools from 2003 to 2006. He was a reviewer of the German Research Foundation from 1996 to 2004 and member of the Board of National Medical Examination (part 1) from 1993 to 2003. Since 2009 Reinhard Putz is member of the board of governors of Medical University of Innsbruck/Austria.
The academic work of Professor Reinhard Putz has been recognized in the form of numerous national and international awards and prizes. These include an honorary degree from the University of Constanta (Romania) and membership in the German National Academy of Sciences Leopoldina and the European Academy of Sciences and Arts. He also received the Friedrich-Pauwels Medal of the German Society of Orthopedics, and the Ars Legendi award by the German Rectors’ Conference and Donor’s Association for German Science for “Excellence in teaching“ and for organising a new master program (“Master of Medical Education”) together with the University of Heidelberg.
Anna Wisser was born in Böblingen, Germany. She studied "Sport Science" and "Sport Therapy" at the University of Freiburg and graduated in 2014. Following her Bachelors degree, she continued her education in the master program "Human Technology in Sports and Medicine" at the German Sport University Cologne. She completed the degree with her thesis on the "Validation of an IMU-based Measurement System in Preparation for Clinical Gait Analysis" in 2017.
During her studies she gained in-depth knowledge in the core areas of sport science, as physiology and biomechanics, as well as in fields like data management and analysis. Outside of her education in the field of sport science she was educated in business administration, business strategy and project management.
From September 2018 on Anna Wisser has been supporting the Chondrometrics team in the areas of project management and quality control. She is also enrolled in the Medical Science Doctorate Study Program (PhD) at the Paracelsus Medical University (PMU) in Salzburg. Her research project deals with the "Dependence of functional performance measures (chair stand and walk tests) on lower limb pain, radiographic osteoarthritis status, and thigh bone / muscle / adipose phenotypes".
Representatives of Chondrometrics are actively involved in academic research and publish continuously and extensively in the biomedical literature. The current section provides snapshots on these activities, presenting:
The Google Scholar publication metrics of Chondrometrics authors (Date: July 31st, 2024)
Felix Eckstein | All | Since 2020 |
---|---|---|
Total Citations | 38463 | 10860 |
H-Index * | 106 | 46 |
i10-index ** | 439 | 291 |
Wolfgang Wirth | All | Since 2020 |
---|---|---|
Total Citations | 8433 | 3939 |
H-Index * | 53 | 33 |
i10-index ** | 154 | 134 |
* for explanation of this widely accepted metric of scientific impact, please check: https://de.wikipedia.org/wiki/H-Index, https://en.wikipedia.org/wiki/H-Index
** The i10 index is a specific metric used primarily within Google Scholar, to evaluate the “breadth” of scientific impact of a specific researcher. The index counts all authored or co-authored publications that are cited >10x since publication
In our Exclusive Executive Summaries section, we are synthesizing series of current publications around focus topics. These “mini-reviews” provide short overviews over key areas of interest, as well as archives for downloading PDFs of the relevant articles (click the reference# to download the pdf [when available open access]).
Enjoy reading and do not hesitate to contact us for questions or further discussion.
The Sprifermin program is unique amongst potential disease modifying osteoarthritis drug (DMOAD) trials, as it encompasses several large multicenter randomized control trials, providing a tremendously rich resource for designing future DMOAD trials. With 5-year follow-up, FORWARD (Phase IIb) was the longest OA trial, using MR imaging, to date.
The phase I “First in Man” (FIH) randomized control trial (RCT) studied the safety and potential efficacy of intra-articular sprifermin (rhFGF18) in 73 knee osteoarthritis (KOA) patients, scheduled for knee replacement. The study was suggestive of an anabolic effect on medial femorotibial cartilage, and of a reduction of knee replacement rates, without these observations reaching statistical significance (1).
In the following phase IIa “Proof of Concept” POC study, 192 KOA patients were randomized to placebo or 1 of 3 sprifermin doses, injected 3 times over 3 weeks, and the same set of injects again 3 months later (2). In this study, the dose-response in the primary structural endpoint (central medial femorotibial cartilage thickness) was distinguishable, but did not reach statistical significance, at months 3, 6 or 12 follow-up. However, rhFGF18 significantly increase cartilage thickness in the lateral and total (medial and lateral) femorotibial compartment relative to placebo-injected knees (2). There was a substantial reduction in knee pain in all study participants over 12 months, but no statistically significant effect of rhFGF18 in this study relative to placebo. Location-independent analysis of cartilage thickness change (see another Executive Summary on this Page) revealed that rhFGF18 not only increased cartilage thickness (at potentially non-useful locations in the joint), but effectively reduced cartilage loss (3).
In the phase IIb study (FGF-18 Osteoarthritis Randomized Trial with Administration of Repeated Doses / FORWARD), 549 participants were randomized to 4 dose and 1 placebo group, with injection cycles at screening, 6,12, and 18 months (4). The patients included displayed Kellgren Lawrence Grade (KLG) 2-3 (medial or lateral disease), with a medial radiographic joint space width (JSW) of >2.5mm. This study found a statistically significant dose-dependent effect on the primary endpoint (total femorotibial cartilage thickness) as well as the central medial femorotibial subregion at year 2 and 3 (4), but no effect on medial radiographic JSW. Reduction in WOMAC pain (approximately 50%) was again seen in all 5 groups, but not statistically significantly greater than in placebo (4). Post-hoc analysis using location-independent measurement technology (see above) demonstrated a doubling of the cartilage thickening score over 2y with the highest sprifermin dose compared with placebo and with healthy Osteoarthritis Initiative (OAI) reference subjects. There also was a significant reduction of the cartilage thinning score to -0.43mm with the highest sprifermin dose, compared wtih -0.77mm in placebo and with -0.34mm in healthy reference subjects from the OAI (5).
Pertinent with the inclusion criteria, only a small number of FORWARD participants displayed advanced KOA. In a post-hoc analysis of a subcohort at risk (SAR) (6) that included the patients with more severe radiographic disease and pain, femorotibial cartilage thickness gain with the highest sprifermin dose vs. placebo was as high as for the total cohort (0.06 and 0.05 mm at 2 and 3y, respectively) (6) . In this cohort, with clinically and structurally advanced disease, sprifermin treatment translated into a statistically significant and clinically relevant benefit with the highest dose vs. placebo (-8.75 on a 0-100 WOMAC pain scale vs. only 0.97 for the total cohort) (6) . These findings suggest that the anabolic effect on cartilage is not less pronounced in advanced vs. early KOA, whereas translation of structure modification to symptom benefit appears to be more likely when KOA has progressed further.
The 5-year follow-up in FORWARD confirmed that post-treatment cartilage loss was similar amongst the sprifermin- and placebo-treated participants, and that the structural benefit achieved during the treatment period (0.05 mm total femorotibial cartilage thickness between the highest sprifermin dose group vs. placebo) was maintained for another 3 years (7). These findings suggest that the cartilage produced with induction of sprifermin appears to withstand in a normal mechanical environment and provide a lasting benefit after cessation of treatment (7). After 5 years, this structural benefit was also maintained in the SAR, with translation of structure modification into a clinical benefit still apparent after year 5 (7).
More studies pending publication, also see News Section for recent conference contributions
1. Dahlberg LE, Aydemir A, Muurahainen N, Gühring H, Fredberg Edebo H, Krarup-Jensen N, et al.
A first-in-human, double-blind, randomised, placebo-controlled, dose ascending study of intra-articular rhFGF18 (sprifermin) in patients with advanced knee osteoarthritis.
Clin Exp Rheumatol 2016;34:445–50.
2. Lohmander LS, Hellot S, Dreher D, Krantz EFW, Kruger DS, Guermazi A, et al.
Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial.
Arthritis Rheumatol (Hoboken, NJ) 2013;66:1820–1831.
3. Eckstein F, Wirth W, Guermazi A, Maschek S, Aydemir A.
Intra-articular sprifermin not only increases cartilage thickness, but also reduces cartilage loss - location-independent post hoc analysis using MR imaging.
Arthritis Rheumatol 2015;67:2916–2922.
4. Hochberg MC, Guermazi A, Guehring H, Aydemir A, Wax S, Fleuranceau-Morel P, et al.
Effect of Intra-Articular Sprifermin vs Placebo on Femorotibial Joint Cartilage Thickness in Patients With Osteoarthritis.
JAMA 2019;322:1360–1370.
5. Eckstein F, Wax S, Aydemir A, Wirth W, Maschek S, Hochberg M.
Intra-articular sprifermin reduces cartilage loss in addition to increasing cartilage gain independent of femorotibial location: a post-hoc analysis of a randomized, placebo-controlled phase ii clinical trial.
Ann Rheum Dis 2020;79:525–528.
6. Guehring H, Moreau F, Daelken B, Ladel C, Guenther O, Bihlet AR, et al.
The effects of sprifermin on symptoms and structure in a subgroup at risk of progression in the FORWARD knee osteoarthritis trial.
Semin Arthritis Rheum 2021;51:450–456.
7. Eckstein F, Hochberg MC, Guehring H, Moreau F, Ona V, Bihlet AR, et al.
Long-term structural and symptomatic effects of intra-articular sprifermin in patients with knee osteoarthritis: 5-year results from the FORWARD study.
Ann Rheum Dis 2021;80:1062–1069.
Table listing Pharma-Industry-initiated clinical trials with Chondrometrics participation, specifying study phase, period, # of knees, # of time points, # of total MRIs, # of sites & location of sites
Vendor # | Clin. Study Phase | Analysis Period | # of Knees | # of Time Points | # MRIs analyzed (- drop out) | # of Sites | Location of Sites | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NAM | SAM | EUR | SA | ASIA | AUS | |||||||
1 | 2 | 2011 | 110 | 2-3 | approx. 240 | 46 | X | |||||
2 | 2 | 2014 | 89 | 2-3 | approx. 220 | 8 | X | |||||
3 | 2 | 2015-2017 | 190(95p) | 3 | approx. 550 | 15 | X | |||||
4 | 2 | 2005-2010 | 192 | 6 | approx. 1200 | 28 | X | X | X | |||
5 | 2B | 2013-2019 | 549 | 6 | approx. 4000 | 13 | X | X | X | X | ||
6 | 2B | 2018-2020 | 932 | 3 | approx. 2700 | 81 | X | X | X | X | ||
7 | 2B | 2022-2024 | 572 | 5 | approx. 2500 | 76 | X | X | X | X | X | |
8 | 3 | 2024-2026 | 510 | 4 | approx. 2000 | 27 | X | |||||
9 | 3 | 2024-2026 | 321 | 4 | approx. 600 | 15 | X | |||||
10 | 2 | 2026-2028 | 206 | 3 | approx. 600 | 20 | X |
# = number; TP = time point; § subcohort of 1457; approx = approximately
NAM = North America, SAM = South AM, EUR = Europe, SA = South Africa, AUS = Australia;
Figure: No of citations of the 20 most cited original articles by Chondrometrics authors
Figure: No of citations of the 10 most cited review articles by Chondrometrics authors
Academic Grants, Subcontracts & Services, Software & Training, and Data Sharing Agreements for Medical Image Analysis by Chondrometrics GmbH since its Foundation in 2003.
More recent contracts are listed on the top; industry contracts are not included.
The pie chart below displays the number of projects per country (percent of total in brackets) from where funding was obtained (63 projects in total).
Pie Chart Showing the Number of Academic Projects since 2003 per Country (n=63)
Neal Bangerter is an Associate Professor of Bioengineering at Imperial College London. His current research interests include the application of artificial intelligence and machine learning to a variety of problems in medical imaging and healthcare, and the development of novel medical imaging technologies with a particular focus on musculoskeletal applications.
In addition to his research and teaching interests, Neal is passionate about innovation/entrepreneurship and intellectual property strategy. He regularly consults and advises in these areas. He has deep technical expertise in healthcare, medical imaging, machine learning, big data, signal processing, and software development, and significant management and strategy experience from his work in industry.
Neal holds a BA with honors in Physics from UC-Berkeley and a Master’s and PhD in Electrical Engineering from Stanford University. He has held permanent and visiting positions at Oxford University, INSEAD, Brigham Young University, University of Utah, Microsoft, and management consulting firm McKinsey & Company.Name: | Mikael Ploug Boesen, MD, Ph.D. |
Born: | May 27th 1971 in Copenhagen, Denmark |
Work: | Bispebjerg and Frederiksberg Hospital, Deptof Radiology, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark |
2017 | Professor in musculoskeletal radiology at Copenhagen University and Bispebjerg and Frederiksberg Hospital |
2015 | Associate Professor in Radiology at Copenhagen University, Denmark |
2014 | Senior Consultant, head of musculoskeletal imaging and research, Dept. of Radiology, Bispebjerg and Frederiksberg Hospital |
2009-2013 | Head of MSK MRI research, Dept. of Radiology, Bispebjerg and Frederiksberg |
2013 | Specialist in Radiology, Consultant in Radiology, Dept. of Radiology Bispebjerg and Frederiksberg |
2008 | PhD degree entitled: “Magnetic Resonance Imaging of Joints Following Intra-articular Treatment and Procedures in Arthritis” |
1999 | Medical school graduation (Cand. Med.), University of Copenhagen |
I defended my PhD thesis in June 2008, entitled "Magnetic resonance imaging of joints following intra-articular treatment in arthritis" from the Parker Institute and Aalborg University. Throughout my radiology career I have pursued my special interest in advanced imaging of patients with various musculoskeletal conditions. My group and I have, specialised in quantification of cartilage changes as well as, soft tissue and bone inflammation in the joints with advanced imaging. We also serve as European reference centre for studies using a tilting open dedicated MRI unite – G-scan from ESAOTE, looking at the mechanical changes in the soft tissue, bone and cartilage in the spine, knee joints and feet going from supine to standing position.
Since 2008 I have been chairman of the IMAGINE group investigating DCE-MRI in patients with inflammatory arthritis, and I have co-organised several national and international imaging symposia’s and imaging courses, and have served as radiological specialist in the development of the national and international guidelines for imaging of degenerative and inflammatory joint and spinal diseases. I am an invited associate board member of the of the Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, MUSKRAD, ESSR, DRS, ESR, EULAR,OARSI, DIMS and I am part of the clinical and scientific advisory board of Image Analysis Group, London UK since 2010, where I have served as chairman until January 2019. Recently I have joined the scientific advisory board member of Chondrometrics, GmbH, Ainring, Germany in February 2019.
Jan 2014- | Senior Consultant, head of musculoskeletal imaging and research, Dept. of Radiology, Bispebjerg and Frederiksberg Hospital, Copenhagen Denmark |
2010-2018 | Head of clinical and research advisory board Image Analysis Group (IAG), London, UK |
2007- | Head of MSK MRI research, Dept. of Radiology, and Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen Denmark |
Rainer Burgkart was born in Munich, Germany. He studied Medicine in Essen and Münster and graduated in 1988. From 1989 to 1991 Rainer Burgkart was resident in the Clinic for Orthopaedics and Sportorthopaedics at the Klinikum r.d. Isar der Technical University Munich (TUM). From 1991 to 1992 he received a research fellowship in the Orthopaedic Clinic, Duke University/Durham, N.C., USA (Direktor: Prof. Dr. J. Urbaniak). After continuing residency in 1992 in Clinic for Orthopaedics and Sportorthopaedics at the Klinikum r.d. Isar he completed his board exams in Juli 1997. Since then he worked as a senior attending (Oberarzt) at this Clinic and received a second research fellowship and joined the research group of Prof. Farsh Guilak from 1998 to 1999 in the Orthopaedic Clinic, Duke University/Durham, N.C., USA.
Since 2000 Rainer Burgkart is Head of Research and Education of the Clinic for Orthopaedics and Sportorthopaedics, Klinikum rd Isar, TUM. He completed his “Habilitation” in 2007 and since February 2007 announced as an Associate Professor.
His research focus are topics as MRT cartilage characterization and Ultrasound Imaging including AI-based analytic methods, Endoprostheses, Biofunctional Implant Surfaces in respect to Bone Ingrowth and Antibacterial Properties (in vitro (cell lab) and in vivo testing (animal), Computer Assisted Surgery and Robotics, Implant Testing and Implant Optimization, Biomechanics of Macro- and Micro- Level (e.g. subcellular Biomechanics in Tissue Culture) as well as Simulators for Medical Education (especially haptic interfaces), new Training Systems for Musculoskelettal Exercise, Virtual Operation Planning, Modelling and AI. Rainer Burgkart was responsible Congress Secretary of the German Orthopaedic Society (DGOOC) for organizing the first common German Congress of Orthopaedic and Traumatology (DKOU) in Berlin in 2005. In addition he was involved in the organisation of several congress as the 5th World Congress of Biomechanics in 2006 in Munich and the Congress of the German Surgery Society in Berlin in 2010. He was the founding member of the German “Netzwerk für Regenerative Medizin” and the “Netzwerk für Muskuloskelettale Biomechanik”. From 2006 until 2019 he was a Board member of DFG- Excellenz-Initiative TUM International Graduate School of Science and Engineering (IGSSE) and since 2007 he is a permanent Board member of the „Deutscher DIN Normenausschuss DIN NA 027-02-15 AA - Endoprothetik und Osteosynthese". As a selection of scientific awards Rainer Burgkart received e.g. for cartilage analysis the Göran Selvik Award of European Orthopaedic Research Society 1999 (for advanced computer 3D volumetry methods in „MRI-based assessment of cartilage loss in severe osteoarthritis- accuracy, precision and diagnostic value“) and the Investigator Award des V. Münchener Symposium in 2015 (for “Kartographie des Erholungsverhaltens und der Steifigkeit des artikulären Knorpels im adulten, ovinen Kniegelenk) and for roboter-based new teaching simulators e.g. the ISPO Academic Challenge Award 2003, “The Best of the Best“- Award of the Bayerische Gesellschaft für Geburtshilfe und Frauenheilkunde e.V. (BGGF) 2004, the EU Robotics Technology Transfer Award 2011, and in the field of tissue characterization the Winner of the Bionikwettbewerb of TUM 2008 for the project „Hard-Soft Interfaces in Biology and Technical Applications – e.g. the tendon-bone interface“, the Karl-Heinz-Höhne 1. Prize MedVis-Award 2010 for „Innovative Visualizing of Implant Planning in Orthopedics” and as Teaching Award e.g. the Excellence Award of "Best Academic Teacher of 2015 in TUM Medicine".Akshay Chaudhari is a Research Scientist at the Department of Radiology at Stanford University. Akshay graduated with a Ph.D. in Bioengineering from Stanford University in 2017 and B.S. from the University of California San Diego in 2012. He is interested intertwining medical imaging and computer science to develop biomedical imaging methodologies to better under physiology and to enhance the efficacy and efficiency of current diagnostic techniques. Akshay is currently combining deep learning and computer vision methods to advanced magnetic resonance imaging (MRI) data acquisition and signal processing techniques for generating rapid, quantitative and morphological magnetic resonance imaging (MRI) examinations. He seeks to develop such MR imaging techniques and implement them for diagnostic clinical imaging and in research studies evaluating early disease progression.
Akshay is experienced with hardware and software start-up companies. He previously was a consulting Technology and Application Specialist for Skope Magnetic Resonance Technologies and is currently a Deep Learning Research Scientist at Subtle Medical and also a scientific advisor for Brain Key.
Jamie E. Collins is Associate Professor of Orthopaedic Surgery at Harvard Medical School and Associate Director of the Orthopaedic and Arthritis Center for Outcomes Research at Brigham and Women’s Hospital in Boston, USA. She is the Director of the Biometry Consultancy Unit in the Department of Orthopaedic Surgery at Brigham and Women’s Hospital and Director of the Data Management & Analysis Core of the Brigham Coordinating Center for the Arthritis Foundation’s Osteoarthritis Clinical Trials Network. She received her master’s degree in mathematics and PhD in Biostatistics from Boston University.
Her research interests include the analysis of multilevel and correlated data, missing data and informative dropout, group-based trajectory and latent growth curve models, risk prediction, and machine learning methods for clustering and disease phenotyping. She oversees data collection and analysis for a number of NIH and foundation funded randomized controlled trials in OA and rheumatology.
Jamie is the lead statistician for the FNIH OA Biomarkers Consortium, an international collaboration that aims to identify novel knee osteoarthritis biomarkers with the greatest utility for predicting disease progression and treatment response in clinical trials. This public-private partnership is supported by the NIH, FDA, Arthritis Foundation, and a number of industry partners. The ultimate goal is formal biomarker qualification by regulatory authorities such as FDA and EMA.
Jamie is an Associate Editor for Statistics at Osteoarthritis and Cartilage, an Advisory Editor for Statistics at Arthritis & Rheumatology, and an Editorial Board Member at Arthritis Care and Research and Osteoarthritis Imaging. She is chair of the Osteoarthritis Research Society International Communications Committee and a member of the American College of Rheumatology Committee on Registries and Health Information Technology.
Ali Mobasheri is Professor of Musculoskeletal Biology in the Research Unit of Health Sciences and Technology within the Faculty of Medicine at the University of Oulu in Finland. He also holds the position of Chief Researcher and International Adviser in the State Research Institute Centre for Innovative Medicine in Vilnius, Lithuania. He is the Immediate Past President of the Osteoarthritis Research Society International (OARSI) and serves on the Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). In addition, he serves as “Collaborateur Scientifique de l’Université de Liège” and Senior Strategic Advisor to the World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium. He is a member of the International Cartilage Regeneration & Joint Preservation Society (ICRS) and serves on the translational science committee of ICRS.
Ali has held visiting professorships at Harvard University in Boston (USA), University Medical Centre Utrecht (Netherlands) and King Abdulaziz University in Jeddah (Kingdom of Saudi Arabia). He is currently a Visiting Professor at Sun Yat-sen University, Guangzhou, Guangdong, China. His current research focuses on cartilage biology, specifically cellular metabolism, ion channel physiology and biomarkers of osteoarthritis. He is ranked as one of the top 10 leading experts in the world on “osteoarthritis” and “cartilage” on expertscape.com. Ali already leads a multidisciplinary team of researchers in Vilnius and is building a new team of researchers at the University of Oulu. His work is currently funded by the Academy of Finland, The Lithuanian Research Council, and several funding mechanisms of the European Commission (FP7, Horizon Europe, COST Action, EuroNanoMed, Innovative Medicines Initiative).
Tom Turmezei has been a Consultant Radiologist at the Norfolk and Norwich University Hospital, UK, since 2017 and has over a decade of specialist diagnostic and interventional experience in a wide range of musculoskeletal disorders, including joint disease. Having graduated from the University of Cambridge, UK, in 1999 (MA) and then Oxford, UK, in 2002 (BMBCh), he trained in Radiology at Norwich, Nottingham and Cambridge, followed by a musculoskeletal specialist fellowship at the Royal National Orthopaedic Hospital in Stanmore, UK, from 2016 to 2017.
Promoted to Honorary Professor at the University of East Anglia, UK, in 2022, Tom spent three years between 2012 and 2016 in his Wellcome Trust clinical PhD fellowship with the Medical Imaging Group at the Cambridge University Engineering Department, UK. During this time he developed quantitative 3-D computed tomography (CT) and magnetic resonance imaging (MRI) analysis techniques for joint space and articular cartilage evaluation. Having evolved these throughout the lower limb, his research has also included cartilage segmentation and multiparametric MRI at the knee joint.
Tom has twice received the Young Investigator Award from the International Workshop of Osteoarthritis Imaging (2016 & 2019), and is organising the 2025 meeting in Cambridge, UK, where he is also currently a visiting researcher in the University Departments of Medicine and Orthopaedic Surgery.
Tom has worked in a number of international collaborations, including with the Multicenter Osteoarthritis Study (USA) and the AGES-Reykjavik cohort (Iceland), and has supervised postgraduate students at the University Medical Center Utrecht (Netherlands), the University of Oulu (Finland), and the University of Copenhagen (Denmark).
Tom is a Scientific Advisory Board member for the International Society of Osteoarthritis Imaging and founding chair of the Computed Tomography in Osteoarthritis (OCTA) Research group. With clinical and research experience in both osteoarthritis and osteoporosis, he has provided consultancy services to Curvebeam AI, Pfizer Inc., GSK plc, and Amgen Inc., and has oversight of imaging for more than 150 clinical trials in his current position as Imaging Research Lead in Norwich.
Tom is also an award-winning writer and editor of academic textbooks and is currently the Imaging Editor for Gray’s Anatomy (Elsevier). He is a long-standing advocate for the involvement of digital medical imaging in anatomy education. Having also been awarded the UK Royal College of Radiologists (RCR) Roentgen Professorship in 2020 for his academic achievements, Tom has since worked with the RCR and National Institute of Health and Care Research (NIHR) to mentor radiologists and scientists aspiring in imaging research, creating and hosting the CRASH! Podcast in support of this mission.
Chondrometrics GmbH has a close partnership with Paracelsus Medical University, PMU, a private medical school in Austria founded in 2003. By tight integration with the Institute of Anatomy and Musculoskeletal Research, Chondrometrics and its employees maintain their roots in academic research, providing the company with a strong basis for innovation and validation of quantitative imaging biomarkers. The University's namesake Paracelsus (1493-1541) was a visionary pioneer of modern medicine and organic chemistry, who lived in Salzburg for parts of his life.
Chondrometrics GmbH also formed a strategic alliance and close collaboration with Boston Imaging Core Lab, BICL LLC in 2009, in order to broaden and advance the capability for offering imaging biomarker analysis to osteoarthritis researchers in academia and the pharmaceutical industry. BICL was founded in June 2007 by three Academic Radiologists from Boston University Medical Center, Boston, MA and is a leading provider of semi-quantitative radiological reading services for joint tissues affected by osteoarthritis, based on advanced radiological scoring systems. BICL's president, Dr Ali Guermazi, a Musculoskeletal Radiologist and Professor of Radiology and Medicine at Boston University School of Medicine.
Together, both companies offer a comprehensive portfolio of quantitative and semi-quantitative imaging biomarkers, to permit their clients to detect risk factors in clinical trials with higher efficiency and to accelerate the development of disease modifying drugs, particularly for osteoarthritis and other joint diseases.
Team members of Chondrometrics GmbH were involved in creating several covers of renowned journals like for example the award winning journal cover of the inaugural issue of O&C open, the official publication organ of the Osteoarthritis Research Society International (OARSI).